Investigation of electrophysical properties of nanomodified fireproof EVA polymer compositions

Authors

DOI:

https://doi.org/10.15587/2312-8372.2019.157581

Keywords:

modified polymer compositions, ethylene-vinyl acetate copolymer, filler-flame retardants, electrophysical characteristics

Abstract

The object of research is the electrophysical properties of fireproof composite materials of ethylene with vinyl acetate, which include filler-flame retardants and modifiers. One of the biggest problems is the change in the electrophysical properties of fireproof composite materials, depending on the chemical properties and dispersion of fillers, fire retardants and modifiers. In order to solve this problem, the dependence of electric strength, specific volume electrical resistance, permittivity and tangent of dielectric loss angle on the number of modifiers and properties of ingredients of polymer compositions is investigated. A copolymer of ethylene with vinyl acetate is used as well as methods for determining the electrical strength, electrical bulk resistance, dielectric loss tangent, permittivity.

The results show that the dielectric strength significantly increases to 32-35 kV/mm in the case of use as fillers-flame retardants of aluminum oxide trihydrate with a smaller average particle diameter of the EVA-1-based polymer matrix and modifier 1. When using the EVA-2-based polymer matrix, high rates (41 kV/mm) obtained for compositions with hydromagnesite and modifier 2. The specific volume electrical resistance varies little for modified polymer compositions using magnesium oxide dihydrate with a smaller average particle size and modifier 2, as well as for the EVA-1 and EVA-2 polymer matrices. After exposure to moisture, the specific volume electrical resistance has a maximum value of 1.2∙1013 Ohmcm for the EVA-1-based polymer composition, a flame retardant – aluminum oxide trihydrate and modifier 1. The permittivity and dielectric loss tangent have the best performance for EVA-1-based polymer compositions, hydromagnesite and modifier 2 (ε=3.3; tg=6∙10-3).

This makes it possible to increase the electrical properties of fireproof compositions for the manufacture of insulation and cable sheaths compared with similar known materials, this reduces material consumption by reducing thickness and makes it possible to increase the economic efficiency of production of fire-resistant cables.

Author Biography

Olena Chulieieva, PJSC «Yuzhcable Works», 7, Avtohenna str., Kharkiv, Ukraine, 61099

PhD, Director of the Science and Technology Center

References

  1. Chulieieva, O. (2017). Development of directed regulation of rheological properties of fire retardant composite materials of ethylene vinyl acetate copolymer. Technology Audit and Production Reserves, 2 (1 (40)), 25–31. doi: https://doi.org/10.15587/2312-8372.2018.129699
  2. Chuleeva, E. V, Zolotarev, V. M., Chuleev, V. L. (2016). Napolniteli-antipireny. Teplofizicheskie svoystva. Khimichna promyslovist Ukrainy, 3-4, 65–69.
  3. Formosa, J., Chimenos, J. M., Lacasta, A. M., Haurie, L. (2011). Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochimica Acta, 515 (1-2), 43–50. doi: https://doi.org/10.1016/j.tca.2010.12.018
  4. Obzor mineral'nyh antipirenov-gidroksidov dlya bezgalogennyh kabel'nyh kompoziciy (2009). Kabel'-news, 8, 41–43.
  5. Ableev, R. (2009). Aktual'nye problemy v razrabotke i proizvodstve negoryuchih polimernyh kompaundov dlya kabel'noy industrii. Kabel'-news, 6-7, 64–69.
  6. Chulieieva, O. (2017). Effect of flame retardant fillers on the fire resistance and physical­mechanical properties of polymeric compositions. Eastern-European Journal of Enterprise Technologies, 5 (12 (89)), 65–70. doi: https://doi.org/10.15587/1729-4061.2017.112003
  7. Laoutid, F., Lorgouilloux, M., Lesueur, D., Bonnaud, L., Dubois, P. (2013). Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polymer Degradation and Stability, 98 (9), 1617–1625. doi: https://doi.org/10.1016/j.polymdegradstab.2013.06.020
  8. Lujan-Acosta, R., Sánchez-Valdes, S., Ramírez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S. et. al. (2014). Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146 (3), 437–445. doi: https://doi.org/10.1016/j.matchemphys.2014.03.050
  9. Chulieieva, O. (2017). Effect of fire retardant fillers on thermophysical properties of composite materials of ethylene-vinyl acetate copolymer. Eastern-European Journal of Enterprise Technologies, 6 (12 (90)), 58–67. doi: https://doi.org/10.15587/1729-4061.2017.119494
  10. Sonnier, R., Viretto, A., Dumazert, L., Longerey, M., Buonomo, S., Gallard, B. et. al. (2016). Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 128, 228–236. doi: https://doi.org/10.1016/j.polymdegradstab.2016.03.030
  11. Chang, M.-K., Hwang, S.-S., Liu, S.-P. (2014). Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite. Journal of Industrial and Engineering Chemistry, 20 (4), 1596–1601. doi: https://doi.org/10.1016/j.jiec.2013.08.004
  12. Jeencham, R., Suppakarn, N., Jarukumjorn, K. (2014). Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 56, 249–253. doi: https://doi.org/10.1016/j.compositesb.2013.08.012
  13. Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J. (1999). Chemical modification of henequén fibers with an organosilane coupling agent. Composites Part B: Engineering, 30 (3), 321–331. doi: https://doi.org/10.1016/s1359-8368(98)00055-9
  14. Jesionowski, T., Pokora, M., Tylus, W., Dec, A., Krysztafkiewicz, A. (2003). Effect of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane surface modification and C.I. Acid Red 18 dye adsorption on the physicochemical properties of silica precipitated in an emulsion route, used as a pigment and a filler in acrylic paints. Dyes and Pigments, 57 (1), 29–41. doi: https://doi.org/10.1016/s0143-7208(03)00006-8
  15. Juvaste, H., Iiskola, E. I., Pakkanen, T. T. (1999). Aminosilane as a coupling agent for cyclopentadienyl ligands on silica. Journal of Organometallic Chemistry, 587 (1), 38–45. doi: https://doi.org/10.1016/s0022-328x(99)00264-8
  16. Makarova, N. V., Trofimec, V. Ya. (2002). Statistika v Excel. Moscow: Finansy i statistika, 368.

Published

2018-12-20

How to Cite

Chulieieva, O. (2018). Investigation of electrophysical properties of nanomodified fireproof EVA polymer compositions. Technology Audit and Production Reserves, 1(1(45), 31–38. https://doi.org/10.15587/2312-8372.2019.157581

Issue

Section

Materials Science: Original Research